Soft dosage forms as interfaces

Authors

DOI:

https://doi.org/10.24959/nphj.21.57

Keywords:

soft dosage forms; interfaces; dynamic polymer matrix; different affinity for excipient membranes; carbomer; propylene glycol; PEG-400; PEG-1500

Abstract

Aim. To analyze data on combined drugs in soft dosage forms as potential drug interfaces.

Materials and methods. The bibliosemantic research method was used in the work.

Results and discussion. By analogy with foreign interfaces of carbon nanotubes with neurons it has been proposed to consider a number of soft dosage forms as interfaces between inanimate organic structures of dosage forms and living cells of the skin tissue or the mucous membrane. A number of soft dosage forms, which can be considered as interfaces between the inanimate organics of dosage forms and living cells of the skin tissue and mucosa, has been studied and analyzed. Interfaces are polymer matrices made of polyethylene glycols, high molecular weight polysaccharides, carbomers, etc. A carbomer can be considered as the basis of plastic, conformationally mobile interfaces between the general dosage form and living cells of the skin and mucosa. It has been shown that the mechanism of increasing biocompatibility with the help of polyethylene glycols is the ability of PEG molecules due to compaction (spiralization) or expansion of the molecules to accept the optimal conformation, giving their hydrophobic or polar groups for the optimal binding, on the one hand, with medicinal substances (drugs), and, on the other hand, with bioobjects. It has been shown that the affinity for PEG-400 phosphatidylcholine liposomes is 6 times greater than that of propylene glycol, and the affinity for PEG-1500 liposomes is 24 times higher than that of propylene glycol. Upon contact with the skin or the mucosa the interface structure may be destroyed as the components of the dosage form have different affinities for membranes of cells of biological surfaces – surface active substances that quickly bind to the lipid bilayer of the membranes of the skin or mucous membranes are the first ones that leave the dosage forms. Then, other auxiliary substances of the interface bind to the cell membranes at different speeds and in different ways.

Conclusions. Therefore, a dosage form as an interface is a dynamic matrix that can rebuild and, as it contacts the membranes of skin cells or mucous membranes, promote absorption of the drug substance according to a specific program.

Author Biographies

L. V. Ivanov , O. O. Chuiko Institute of Surface Chemistry National Academy of Sciences of Ukraine

Candidate of Chemistry (Ph.D), leading researcher

O. Р. Bezugla, Scientific and Technological Complex “Institute of Monocrystals”, National Academy of Sciences of Ukraine

Candidate of Pharmacy (Ph.D), senior researcher, head of the Laboratory of Technology and Analysis of Medicines

O. V. Shcherbak , Kharkiv State Veterinary Academy

Candidate of Agriculture (Ph.D), senior researcher, associate professor of the Department of Biotechnology

L. V. Derymedvid , National University of Pharmacy of the Ministry of Health of Ukraine

Doctor of Medicine (Dr. habil.), professor of the Department of Pharmacology and Pharmacotherapy

V. G. Kravchenko , Ukrainian Medical Stomatological Academy

Doctor of Medicine (Dr. habil.), professor of the Department of Dermatovenereology

References

Conductive single-walled carbon nanotube substrates modulate neuronal growth / E. B. Malarkey et al. Nano letters. 2009. Vol. 9. P. 264–268. DOI: https://doi.org/10.1021/nl802855c.

Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts / G. Cellot et al. Nature Nanotechnology. 2009. Vol. 4. P. 26–133. DOI: https://doi.org/10.1038/nnano.2008.374.

Interfacing functionalized carbon nanohorns with primary phagocytic cells / S. Lacotte et al. Advanced Materials. 2008. Vol. 20, Iss. 12. P. 2421–2426. DOI: https://doi.org/10.1002/adma.200702753.

Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits / A. Mazzatenta et al. Journal of Neuroscience. 2007. Vol. 27, Iss. 26. P. 6931–6936. DOI: https://doi.org/10.1523/JNEUROSCI.1051-07.2007.

Scheuplein R. J., Blank I. H. Permeability of the skin. Physiological Reviews. 1971. Vol. 51, Iss. 4. P. 702–747. DOI: https://doi.org/10.1152/physrev.1971.51.4.702.

Williams M. L., Elias P. M. The extracellular matrix of stratum corneum: role of lipids in in normal and pathological function. Critical Reviews In Therapeutic Drug Carrier Systems. 1987. Vol. 3, Iss. 2. P. 95–112.

Polysaccharide-based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan / S. Boddohi et al. Biomacromolecules. 2009. Vol. 10, Iss. 6. P. 1402–1409. DOI: https://doi.org/10.1021/bm801513e.

In vitro evaluation of a chitosan membrane cross-linked with genipin / F.– L. Mi et al. Journal of biomaterials science. Polymer edition. 2001. Vol. 12, Iss. 8. P. 835–850. DOI: https://doi.org/10.1163/156856201753113051.

A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering / L Zhang et al. Journal of Biomedical Materials Research Part A. 2006. Vol. 77 A, Iss. 2. P. 277–284. DOI: https://doi.org/10.1002/jbm.a.30614.

Kara F., Demirel G., Tümtürk H. Immobilization of urease by using chitosan-alginatcand poly (acrylamide-co-acrylic acid)/kappa-carrageenan supports. Bioprocess and Biosystems Engineering. 2006. Vol. 29. P. 207–211. DOI: https://doi.org/10.1007/s00449-006-0073-0.

Chitosan/carboxymethyl cashew gum polyelectrolyte complex : synthesis and thermal stability / J. S. Maciel et al. European Polymer Journal. 2005. Vol. 41, Iss. 11. P. 2726–2733. DOI: https://doi.org/10.1016/j.eurpolymj.2005.05.009.

Bernabe P., Peniche С., Argiielles-Monal W. Swelling behavior of chitosan/pectin polyelectrolyte complex membranes. Effect of thermal cross-linking. Polymer Bulletin. 2005. Vol. 55, Iss. 5. P. 367–375. DOI: https://doi.org/10.1007/s00289-005-0439-5.

Alginate/chitosan particulate systems for sodium diclofenac release / M. L. Gonzales-Rodriguez et al. International Journal of Pharmaceutics. 2002. Vol. 232, Iss. 1–2. P. 225–234. DOI: https://doi.org/10.1016/S0378-5173(01)00915-2.

Влияние ряда природных и модифицированных полисахаридов, как вспомогательных веществ, на биодоступность и фармакокинетический профиль нитазола при пероральном введении кроликам / Л. В. Иванов и др. Поверхность. 2019. №. 11 (26). С. 566–576. DOI: https://doi.org/10.15407/Surface.2019.11.566.

Фармакокінетичне обгрунтування терапевтичної ефективності антисептичного препарату Цидипол при простатитах / В. Г. Кравченко та ін. Вісник проблем біології і медицини. 2018. В ип. 4, т. 2 (147). С. 143–148. DOI: https://doi.org/10.29254/2077-4214-2018-4-2-147-143-148.

Кравченко В. Г., Іванов Л. В., Щербак О. В. Перспективи лікування простатитів і доброякісної гіперплазії простати цидиполом з позицій нових даних про метаболізм циміналю в оксид азоту і досягненнях NO-терапії. Вісник проблем біології і медицини. 2019. Вип. 1, т. 1 (148). С. 15–19. DOI: https://doi.org/10.29254/2077-4214-2019-1-1-148-15-19.

Изучение механизмов повышения биосовместимости различных веществ с биологическими структурами с помощью полиэтиленгликолей методом спиновых зондов / Л. В. Иванов и др. Поверхность. 2019. № 11 (26). С. 556–565. DOI: https://doi.org/10.15407/Surface.2019.11.556.

Иванов Л. В,. Картель Н. Т. Характеризация реологических свойств поверхности нанобиообъектов методом спиновых зондов. Поверхность. 2012. № 4 (19). С. 334–348.

Исследование гелей с карбомерами методами ротационной вискозиметрии и спиновых зондов / А. Н. Ляпунов и др. Химико-фармацевтический журнал. 2015. Т. 49, № 9. С. 51–56. DOI: https://doi.org/10.30906/0023-1134-2015-49-9-51-56.

Вивчення спорідненості до мембран допоміжних речовин й фармакологічно активних інгредієнтів методами флуоресцентних і спінових зондів / Л. В. Іванов та ін. Фармакологія та лікарська токсикологія. 2019. Т. 13, № 6. С. 434–442. DOI: https://doi.org/10.33250/13.06.434.

Published

2021-10-19

Issue

Section

Technology of Medicines