The synthesis, spectral properties and the biological activity of 7-arenesulfonyl-3-arylmethyl-1,3,7-triazaspiro[4.4]nonane-2,4-dione derivatives

K. Yu. Krolenko, S. V. Vlasov, I. O. Zhuravel, T. P. Osolodchenko

Abstract


Aim. To synthesize the series of 7-arenesulfonyl-3-arylmethyl-1,3,7-triazaspiro[4.4]nonane-2,4-dione, to study their spectral properties and antibacterial activity.

Materials and methods. The methods of organic synthesis, instrumental methods of organic compounds analysis, as well as the agar diffusion method were used.

Results and discussion. By the interaction of 3-arymethyl-1,3,7-triazaspiro[4.4]nonane-2,4-diones with arenesulfonyl cholrides in the presence of triethylamine the series of 7-arenesulfonyl-3-arylmethyl-1,3,7-triazaspiro[4.4]nonane-2,4-dione was obtained. For the compounds containing the fragments of 1-sulfonylamido-(2,4)- and 3,4-difluorobenzene the 1H-1H coupling constants in their 1H{19F}-NMR fluorine decoupled spectra, as well as the 19F-19F coupling constants in the 19F{1H}-NMR proton decoupled spectra were measured. The antimicrobial activity screening showed that the growth of such bacterial strains as Staphylococcus aureus and Bacillus subtilis was inhibited by the compounds of the series obtained.

Conclusions. It has been found that the interaction of 3-arymethyl-1,3,7-triazaspiro[4.4]nonane-2,4-diones with arenesulfonyl cholrides is an effective way for the synthesis of 7-arenesulfonyl-3-arylmethyl-1,3,7-triazaspiro[4.4]nonane-2,4-diones with the promising biological activity against the strains of gram-positive bacteria such as Staphylococcus aureus and Bacillus subtilis. Among 7-arenesulfonyl-3-arylmethyl-1,3,7-triazaspiro[4.4]nonane-2,4-dione derivatives 3-(3-methylbenzyl)-7-(toluene-4-sulfonyl)-1,3,7-triazaspiro[4.4]nonane-2,4-dione exhibited the highest activity. 


Keywords


hydantoin; sulfonamides; pyrrolidone; antibacterial agents

Full Text:

PDF

References


An Efficient Synthesis of 1,3,7-Triazaspiro[4.4]Nonane-2,4-Dione Derivatives and Antimicrobial Activity Thereof / K. Yu. Krolenko, O. V. Silin, S. V. Vlasov et al. // Chem. Heterocycl. Comp. – № 51. – P. 472–477. doi: 10.1007/s10593-015-1721-6.

The synthesis and the antimicrobial activity of the substituted aryl amides of 3-arylmethyl-2,4-dioxo-1,3,7-triazaspiro[4.4]nonane-7-carboxylic acids / K. Yu. Krolenko, S. V. Vlasov, O. D. Vlasova,I.O. Zhuravel // News of Pharmacy. – 2016. – № 4 (88). – P. 17–21.

Inhibition of carbonic anhydrases from the extremophilic bacteria Sulfurihydrogenibium yellostonense (SspCA) and S. azorense (SazCA) with a new series of sulfonamides incorporating aroylhydrazone-, [1,2,4]triazolo[3,4-b][1,3,4]thiadiazinyl- or 2-(cyanophenylmethylene)-1,3,4-thiadiazol-3(2H)-yl moieties / A. Alafeefy, H. Abdel-Aziz, D. Vullo et al. // Biorg. Med. Chem. – 2014. – № 22. – P. 141–147. doi: 10.1016/j.bmc.2013.11.042.

Synthesis and characterization of new N-(4-(4-chloro-1H-imidazol-1-yl)-3-methoxyphenyl)amide/sulfonamide derivatives as possible antimicrobial and antitubercular agents / P. Ranjith, R. Pakkath, K. Haridas, S. Kumari // Eur. J. Med. Chem. – 2014. – № 71. – P. 354–365.doi: 10.1016/j.ejmech.2013.11.002.

Fluorine in medicinal chemistry / S. Purser, P. Moore, S. Swallow, V. Gouverneur // Chem. Soc. Rev. – 2008. – № 37. – P. 320–330. doi: 10.1039/b610213c.

Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011) / J. Wang, M. Sánchez-Roselló, J. Aceña et al. // Chem. Rev. – 2013. – № 114. – P. 2432–2506. doi: 10.1021/cr4002879.

Kenneth, L. K. Fluorine in medicinal chemistry: recent therapeutic applications of fluorinated small molecules / Kirk Kenneth L. // J. Fluorine Chem. – 2006. – № 127. – P. 1013–1029. doi: 10.1016/j.jfluchem.2006.06.007.

Park, B. Metabolism of fluorine-containing drugs / B. Park,N. Kitteringham, P. O’Neill // Annu. Rev. Pharmacool. Toxicol. – 2001. – № 41. – P. 443–470. doi: 10.1146/annurev.pharmtox.41.1.443.

O’Hagan, D. Some influences of fluorine in bioorganic chemistry / D. O’Hagan, H. Rzepa // Chem. Commun. – 1997. – № 7. – P. 645–652. doi: 10.1039/a604140j.

Бактеріологічний контроль поживних середовищ [Текст]: інформаційний лист / МОЗ України № 05. 4. 1 / 1670. – К., 2000. – 4 с.

Волянський, Ю. Л. Вивчення специфічної активності протимікробних лікарських засобів : метод. рек. МОЗ України / Ю. Л. Волянський, І. С. Гриценко, В. П. Широбоков та ін.; ДФЦ МОЗ України. – К., 2004. – 38 с.

American Society for Microbiology. Manual of Antimicrobial Susceptibility Testing. American Society for Microbiology. –Washington, 2005. – P. 236.

McFarland, J. The nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines / Joseph McFarland // J. Am. Med. Assoc. – 1907. – № 49. – P. 1176–1178. doi: 10.1001/jama.1907.25320140022001f.

Well diffusion for antifungal susceptibility testing / S. Magaldi, S. Mata-Essayag, C. De Capriles et al. // Int. J. Infect. Dis. – 2004. – № 8. – P. 39–45. doi: 10.1016/j.ijid.2003.03.002.

A general approach to indole-7-yl derivatives of isoxazole, oxadiazole, thiadiazole and pyrazole / A. Polozov, G. Hategan, H. Cao et al. // Tetrahedron Lett. – 2010. – № 51. – P. 575–578. doi: 10.1016/j.tetlet.2009.11.073.

Design, synthesis and biological evaluation of novel 4-alkynyl-quinoline derivatives as PI3K/mTOR dual inhibitors / X. Lv, H. Ying, X. Ma et al. // Eur. J. Med. Chem. – 2015. – № 99. – P. 36–50. doi: 10.1016/j.ejmech.2015.05.025.

Synthesis, biological evaluation of new oxazolidino-sulfonamides as potential antimicrobial agents / A. Kamal, P. Swapna, R. Shetti та ін. // Eur. J. Med. Chem. – 2013. – № 62. – P. 661–669. doi: 10.1016/j.ejmech.2013.01.034.


GOST Style Citations


1.  Krolenko, K. Y., Silin, O. V., Vlasov, S. V., Zhuravel, I. O., & Kovalenko, S. M. (2015). An Efficient Synthesis of 1,3,7-Triazaspiro[4.4]Nonane-2,4-Dione Derivatives and Antimicrobial Activity Thereof. Chemistry of Heterocyclic Compounds, 51 (5), 472–477. doi: 10.1007/s10593-015-1721-6.

2.  Krolenko, K. Yu., Vlasov, S. V., Vlasova, O. D., Zhuravel, I. O. (2016). The synthesis and the antimicrobial activity of the substituted aryl amides of 3-arylmethyl-2,4-dioxo-1,3,7-triazaspiro[4.4]nonane-7-carboxylic acids. News of Pharmacy, 4 (88), 17–21.

3. Alafeefy, A. M., Abdel-Aziz, H. A., Vullo, D., Al-Tamimi, A.-M. S., Al-Jaber, N. A., Capasso, C., Supuran, C. T. (2014). Inhibition of carbonic anhydrases from the extremophilic bacteria Sulfurihydrogenibium yellostonense (SspCA) and S. azorense (SazCA) with a new series of sulfonamides incorporating aroylhydrazone-, [1,2,4]triazolo[3,4-b][1,3,4]thiadiazinyl- or 2-(cyanophenylmethylene)-1,3,4-thiadiazol-3(2H)-yl moieties. Bioorganic & Medicinal Chemistry, 22 (1), 141–147. doi: 10.1016/j.bmc.2013.11.042.

4.  Ranjith, P. K., Pakkath, R., Haridas, K. R., Kumari, S. N. (2014). Synthesis and characterization of new N-(4-(4-chloro-1H-imidazol-1-yl)-3-methoxyphenyl)amide/sulfonamide derivatives as possible antimicrobial and antitubercular agents. European Journal of Medicinal Chemistry, 71, 354–365. doi: 10.1016/j.ejmech.2013.11.002.

5.  Purser, S., Moore, P. R., Swallow, S., Gouverneur, V. (2008). Fluorine in medicinal chemistry. Chem. Soc. Rev., 37 (2), 320–330. doi: 10.1039/b610213c.

6.  Wang, J., Sánchez-Roselló, M., Aceña, J. L., delPozo, C., Sorochinsky, A. E., Fustero et al. (2014). Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). Chemical Reviews, 114 (4), 2432–2506. doi: 10.1021/cr4002879.

7.  Kirk, K. L. (2006). Fluorine in medicinal chemistry: Recent therapeutic applications of fluorinated small molecules. Journal of Fluorine Chemistry, 127 (8), 1013–1029. doi: 10.1016/j.jfluchem.2006.06.007.

8.  Park, B. K., Kitteringham, N. R., O’Neill, P. M. (2001). Metabolism of fluorine-containing drugs. Annual Review of Pharmacology and Toxicology, 41 (1), 443–470. doi: 10.1146/annurev.pharmtox.41.1.443.

9.  O’Hagan, D., Rzepa, H. S. (1997). Some influences of fluorine in bioorganic chemistry. Chemical Communications, (7), 645–652. doi: 10.1039/a604140j.

10.       MOZ Ukrainy. (2000). Bakteriolohichnyi kontrol’ pozhyvnykh seredovyshch. Informatsiinyi lyst № 05. 4. 1 / 1670. Kyiv, 4.

11.       Volians’kyi, Yu. L., Hrytsenko, I. S., Shyrobokov, V. P. et al. (2004). Vyvchennia spetsyfichnoi aktyvnosti protymikrobnykh likars’kykh zasobiv. Kyiv, 38.

12.       American Society for Microbiology. (2005). Manual of Antimicrobial Susceptibility Testing. American Society for Microbiology.Washington, 236.

13.       McFarland, J. (1907). The nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. Jama: The Journal of the American Medical Association, XLIX (14), 1176–1178. doi: 10.1001/jama.1907.25320140022001f.

14.       Magaldi, S., Mata-Essayag, S., Hartung de Capriles, C., Perez, C., Colella, M., Olaizola, C., Ontiveros, Y. (2004). Well diffusion for antifungal susceptibility testing. International Journal of Infectious Diseases, 8 (1), 39–45. doi: 10.1016/j.ijid.2003.03.002.

15.       Polozov, A. M., Hategan, G., Cao, H., Kiselyov, A. S., Zeller, W., Singh, J. (2010). A general approach to indole-7-yl derivatives of isoxazole, oxadiazole, thiadiazole and pyrazole. Tetrahedron Letters, 51 (4), 575–578. doi: 10.1016/j.tetlet.2009.11.073.

16.       Lv, X., Ying, H., Ma, X., Qiu, N., Wu, P., Yang, B., Hu, Y. (2015). Design, synthesis and biological evaluation of novel 4-alkynyl-quinoline derivatives as PI3K/mTOR dual inhibitors. European Journal of Medicinal Chemistry, 99, 36–50. doi: 10.1016/j.ejmech.2015.05.025.

17.       Kamal, A., Swapna, P., Shetti, R. V. C. R. N. C., Shaik, A. B., Narasimha Rao, M. P., Gupta, S. (2013). Synthesis, biological evaluation of new oxazolidino-sulfonamides as potential antimicrobial agents. European Journal of Medicinal Chemistry, 62, 661–669. doi: 10.1016/j.ejmech.2013.01.034.





DOI: https://doi.org/10.24959/nphj.17.2149

Abbreviated key title: Vìsn. farm.

ISSN 2415-8844 (Online), ISSN 1562-7241 (Print)