The quantitative “structure – antibacterial activity” relationships in a series of N-substituted amino acids

M. Yu. Golik, O. S. Kryskiv, A. M. Komissarenko, O. V. Kolisnyk, K. I. Dudka

Abstract


The presence of the antibacterial and antifungal activity in derivatives of amino acids is determined by different mechanisms; therefore, a promising field of research is to obtain new N-substituted amino acids and study their antibacterial action.

Aim. To determine the quantitative “structure – antibacterial action” relationships in a series of N-substituted amino acids.

Materials and methods. The quantitative dependencies of the antibacterial action of the compounds studied on AlogPs values were calculated using the STATISTIKA 8 program.

Results and discussion. The satisfactory values of the levels of correlation of AlogPs parameters calculated with the experimental data of the antibacterial activity of N-substituted amino acids against S. aureus, E. coli, P. vulgaris, P. aeruginosa, B. subtilis, and Cl. perfringens are statistically significant. The absence of the relationship between the antibacterial effect against C. albicans and the structure of threonine derivatives may indicate a possible role of the latter in the metabolism of these fungi.

Conclusions. The statistically significant correlation values of AlogPs with the values of the antibacterial action of N-substituted amino acids against the microorganisms studied have been determined, and it quantitatively confirms the earlier assumptions of the existence of the “structure – action” relationship in this series of compounds and the degree of its manifestation.


Keywords


lipophilicity; correlation; antibacterial action; N-substituted amino acids

Full Text:

PDF

References


Antifungal effect and action mechanism of antimicrobial peptide polybia–cp / K. Wang, F. Jia, W. Dang et al. // J. Pept. Sci. – 2016. – Vol. 22, Issue 1. – P. 28–35. doi: 10.1128/aac.05995-11

Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants / ed.E. Vandamme, J. Revuelta. –New York: Wiley–VCH Verlag GmbH & Co. KGaA, 2016. – 581 р. doi: 10.1002/9783527681754

Antimicrobial activities of N–(2–hydroxy–1–naphthalidene)–amino acid (glycine, alanine, phenylalanine, histidine, tryptophane) Schiff bases and their manganese (III) complexes / I. Sakiyan,E. Logoglu, S. Arslan et al. // Biometals. – 2004. – Vol. 17, Issue 2. – P. 115–120. doi: 10.1023/b:biom.0000018380.34793.df

Synthesis and antimicrobial activities of new higher amino acid Schiff base derivatives of 6–aminopenicillanic acid and 7–aminocephalosporanic acid / O. Ozlem, G. Perihan, O. Berrin, O. Oyardi // J. Mol. Struc. – 2016. – Vol. 1106. – P. 181–191. doi: 10.1016/j.molstruc.2015.10.074

Alwan, S. Synthesis and Preliminary Antimicrobial Activity of New Schiff Bases of Pyrido [1,2–a] Pyrimidine Derivatives with Certain Amino Acids /S. Alwan, J. Al–Kaabi, R. Hashim // Med. Chem. – 2014. – Vol. 4, Issue 9. – P. 635–639. doi: 10.4172/2161-0444.1000206

Synthesis and Antimicrobial Activity of N–Substituted–β–amino Acid Derivatives Containing 2–Hydroxyphenyl, Benzo[b]phenoxazine and Quinoxaline Moieties / K. Mickeviciene, R. Baranauskaite, K. Kantminiene et al. // Molecules. – 2015. – Vol. 20. – P. 3170–3189. doi: 10.3390/molecules20023170

Synthesis and antimicrobial activity of α N–phthilimido and acetimido derivatives from amino acids and anhydrides / С. Uma, M. Reddy, B. Jayakar, R. Srinivasan // Int. J. of Pharma and Bio Sci. – 2010. – Vol. 1, Issue 4. – P. 81–86.

Membrane active antimicrobial activity and molecular dynamics study of a novel cationic antimicrobial peptide polybia–MPI, from the venom of Polybia paulista / K. Wang, J. Yan, W. Dang et al. // Peptides. – 2013. – Vol. 39. – P. 80–88. doi: 10.1016/j.peptides.2012.11.002

Antimicrobial activities of amino acid derivatives of monascus pigments / C. Kim, H. Jung, Y. Kim, C. Shin // FEMS Microbiol. Lett. – 2006. – Vol. 264, Issue 1. – P. 117–124. doi: 10.1111/j.1574-6968.2006.00451.x

Design, synthesis and antimicrobial screening of amino acids conjugated 2–amino–4–arylthiazole derivatives / K. Prakasha, G. Raghavendra, R. Harisha, D. Gowda // Int. J. Pharm. Pharm. Sci. – 2011. – Vol. 3, Suppl. 3. – P. 120–125.

Synthesis and antimicrobial evaluation of some amino acid derivatives of 2–amino–4–methylthiazole / H. Hassan, A. El–Haddad, F. Kora, A. El–Naggar // Analele Universita Nii din Bucureşti – Chimie (serie noua). – 2010. – Vol. 19, Issue 2. – P. 23–30.

Dahiya, R. Synthesis, Characterization and Antimicrobial Studies on Some Newer Imidazole Analogs / R. Dahiya // Sci. Pharm. – 2008. – Vol. 76. – P. 217–239. doi: 10.3797/scipharm.0803–04

The search of compounds with the antimicrobial activity among derivatives of aliphatic α–amino acids / A. N. Komissarenko, М. Yu. Golik, O. P. Osolodchenko et al. // The Scientific Heritage. – 2017. – Vol. 1, № 8 (8). – P. 68–71.

The quantitative relationships of the partition coefficients calculated in the series of N–R–amine functional derivatives / М. Golik, О. Кryskiv, A. Komissarenko et al. // Вісник фармації. – 2016. – № 1 (85). – С. 19–23.

Draper, N. Applied Regression Analysis / N. Draper, H. Smith. – 2–nd ed. –New York: John Wiley & Sons, 1998. – 736 p. doi: 10.1002/9781118625590

Mekenyan, O. Dynamic QSAR Techniques Application in Drug Design and Toxicology / O. Mekenyan // Curr. Pharm. Design. – 2002. – Vol. 8. – P. 1605–1621. doi: 10.2174/1381612023394278

Statistica. – Available at: http://www.statsoft.com/Products/STATISTICA–Features

Боровиков, В. П. STATISTICA: искусство анализа данных на компьютере. Для профессионалов. – 2–е изд. / В. П. Боровиков. – СПб. : Питер, 2003. – 688 с.

Вуколов, Э. А. Основы статистического анализа / Э. А. Вуколов. – М : Форум, 2008. – 464 с.

Халафян, А. А. Статистический анализ данных. STATISTICA 6 : учеб. / А. А. Халафян. – 3–е изд. – М. : Бином–Пресс, 2007. – 512 с.

Fujita, T. Recent success stories leading to commercializable bioactive compounds with the aid of traditional QSAR procedures / T. Fujita // QSAR. – 1997. – Vol. 16. – P. 107–112. doi: 10.1002/qsar.19970160202

Rivere, P. Quality et Statistique / P. Rivere // Courrier des statistique. – Paris: INSEE. – 1999. – Vol. 90. – P. 47–58.

Гублер, Е. В. Применение непараметрических критериев статистики в медико–биологических исследованиях / Е. В. Гублер, А. А. Генкин. – Л. : Медицина, 1973. – 141 с.

Brock Biology of Microorganisms / M. Madigan, J. Martinko, D. Stahl, D.Clark. – 13–th ed. –New York: Pearson Education, 2012. – 1155 p.

C. albicans Pathway: glycine biosynthesis from threonine. – Available at: http://pathway.candidagenome.org/CALBI/NEW–IMAGE?object=GLYSYN–THR–PWY

Unexpected Role for a Serine/Threonine–Rich Domain in the Candida albicans Iff Protein Family / A. Boisrame, A. Cornu, G. Costa, L. Richard // Eukaryot Cell. – 2011. – Vol. 10, Issue 10. – P. 1317–1330. doi: 10.1128/EC.05044–11


GOST Style Citations


1.  Wang, K., Jia, F., Dang, W., Zhao, Y., Zhu, R., Sun, M., Wang, R. (2015). Antifungal effect and action mechanism of antimicrobial peptide polybia-CP. Journal of Peptide Science, 22 (1), 28–35. doi: 10.1002/psc.2835

2.  Vandamme, E. J., Revuelta, J. L. (Eds.). (2016). Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants.New York: Wiley–VCH Verlag GmbH & Co. KGaA, 581. doi: 10.1002/9783527681754

3.  Sakıyan, I., Logoglu, E., Arslan, S., Sari, N., Şakiyan, N. (2004). Antimicrobial activities of N-(2-hydroxy-1-naphthalidene)-amino acid(glycine, alanine, phenylalanine, histidine, tryptophane) Schiff bases and their manganese (III) complexes. BioMetals, 17 (2), 115–120. doi: 10.1023/b:biom.0000018380.34793.df

4.  Özdemir (nee Güngör), Ö., Gürkan, P., Özçelik, B., Oyardı, Ö. (2016). Synthesis and antimicrobial activities of new higher amino acid Schiff base derivatives of 6-aminopenicillanic acid and 7-aminocephalosporanic acid. Journal of Molecular Structure, 1106, 181–191. doi: 10.1016/j.molstruc.2015.10.074

5.  Alwan, S. M. (2014). Synthesis and Preliminary Antimicrobial Activity of New Schiff Bases of Pyrido [1,2-A] Pyrimidine Derivatives with Certain Amino Acids. Medicinal Chemistry, 4 (9), 635–639. doi: 10.4172/2161-0444.1000206

6.  Mickevičienė, K., Baranauskaitė, R., Kantminienė, K., Stasevych, M., Komarovska-Porokhnyavets, O., Novikov, V. (2015). Synthesis and Antimicrobial Activity of N-Substituted-β-amino Acid Derivatives Containing 2-Hydroxyphenyl, Benzo[b]phenoxazine and Quinoxaline Moieties. Molecules, 20 (2), 3170–3189. doi: 10.3390/molecules20023170

7.  Uma, С. Reddy, M., Jayakar, B., Srinivasan, R. (2010). Synthesis and antimicrobial activity of α N–phthilimido and acetimido derivatives from amino acids and anhydrides. Int. J. of Pharma and Bio Sci., 1 (4), 81–86.

8.  Wang, K., Yan, J., Dang, W., Liu, X., Chen, R., Zhang, J., Wang, R. (2013). Membrane active antimicrobial activity and molecular dynamics study of a novel cationic antimicrobial peptide polybia-MPI, from the venom of Polybia paulista. Peptides, 39, 80–88. doi: 10.1016/j.peptides.2012.11.002

9.  Kim, C., Jung, H., Kim, Y. O., Shin, C. S. (2006). Antimicrobial activities of amino acid derivatives of monascus pigments. FEMS Microbiology Letters, 264 (1), 117–124. doi: 10.1111/j.1574-6968.2006.00451.x

10.       Prakasha, K., Raghavendra, G., Harisha, R., Gowda, D. (2011). Design, synthesis and antimicrobial screening of amino acids conjugated 2­amino­4­arylthiazole derivatives. Int. J. Pharm. Pharm. Sci. 3 (3), 120–125.

11.       Hassan, H. M., El–Haddad, A. F., Kora, F. A., El–Naggar, A. M. (2010). Synthesis and antimicrobial evaluation of some amino acid derivatives of 2–amino–4–methylthiazole. Analele Universita Nii din Bucuresti – Chimie (serie noua), 19 (2), 23–30.

12.       Dahiya, R. (2008). Synthesis, Spectral and Antimicrobial Studies on some Newer Imidazole Analogs. Scientia Pharmaceutica, 76 (2), 217–239. doi: 10.3797/scipharm.0803-04

13.       Komissarenko, A. N., Golik, М. Yu., Osolodchenko, O. P., Leonova, S. G., Dudka, K. I. (2017). The search of compounds with the antimicrobial activity among derivatives of aliphatic α–amino acids. The scientific heritage, 1 (8 (8)), 68–71.

14.       Golik, М. Yu., Кryskiv, О. S., Komissarenko, A. M., Kolisnyk, O. V., Dudka, K. I. (2016). The quantitative relationships of the partition coefficients calculated in the series of N–R–amine functional derivatives. Visnyk farmatsii – News of Pharmacy, 1 (85), 19–23.

15.       Draper, N. R., Smith, H. (1998). Applied Regression Analysis. (2–nd ed.).New York: John Wiley & Sons, 736. doi: 10.1002/9781118625590

16.       Mekenyan, O. (2002). Dynamic QSAR Techniques: Applications in Drug Design and Toxicology. Current Pharmaceutical Design, 8(17), 1605–1621. doi: 10.2174/1381612023394278

17.       Statistica. Available at: http://www.statsoft.com/Products/STATISTICA–Features

18.       Borovikov, V. P. (2003). STATISTICA: iskusstvo analiza dannyh na computere. Dlya pofessionalov. (2–nd ed.). St. Petersburg : Piter, 688.

19.       Vukolov, E. A. (2008). Osnovy statisticheskogo analiza.Moscow : Forum, 464.

20.      Halafian, A. A. (2007). Statisticheskii analiz dannyh. STATISTICA 6. (3–rd ed.). Moscow : Binom–Press, 512.

21.       Fujita, T. (1997). Recent Success Stories Leading to Commercializable Bioactive Compounds with the Aid of Traditional QSAR Procedures. Quantitative Structure-Activity Relationships, 16 (2), 107–112. doi: 10.1002/qsar.19970160202

22.       Rivere, P. (1999). Quality et Statistique. Courrier des statistique. 90, 47–58.

23.       Gubler, E. V., Genkin, A. A. (1973). Primenenie neparametricheskih kriteriev statistiki v mediko–biologicheskih issledovaniyah. Leninhrad: Meditsina, 141.

24.       Madigan, M., Martinko, J., Stahl, D., Clark, D. (2012). Brock Biology of Microorganisms. (13–th ed.).New York : Pearson Education, 1155.

25.       C. albicans Pathway : glycine biosynthesis from threonine. Available at : http://pathway.candidagenome.org/CALBI/NEW–IMAGE?object=GLYSYN–THR–PWY

26.       Boisrame, A., Cornu, A., Da Costa, G., Richard, M. L. (2011). Unexpected Role for a Serine/Threonine-Rich Domain in the Candida albicans Iff Protein Family. Eukaryotic Cell, 10 (10), 1317–1330. doi: 10.1128/ec.05044-11





DOI: https://doi.org/10.24959/nphj.17.2153

Abbreviated key title: Vìsn. farm.

ISSN 2415-8844 (Online), ISSN 1562-7241 (Print)