Amino acids in cardiology, gastroenterology and neurology


  • N. A. Gorchakova Bogomolets National Medical University, Ukraine
  • A. V. Zaychenko Bogomolets National Medical University, Ukraine
  • K. Yu. Sorokopud Bogomolets National Medical University, Ukraine



amino acids, pathogenesis, cardiology, gastroenterology, neurology


Aim. To determine the role of amino acids in cardiology, gastroenterology and neurology.

Materials and methods. The material of the article was the literature data on the use of amino acids in cardiology, gastroenterology and neurology, which were processed by methods of generalization and systematization.

Results and discussion. Data on the role of leucine, isoleucine, and valine in the pathogenesis of heart failure and the effect on their metabolism for prophylactic and therapeutic purposes are provided. The antiatherogenic role of glycine and leucine, taurine and arginine in the metabolic syndrome has been highlighted. The neuroprotective and cardioprotective values of L-arginine, and the neurotransmitter value of glutamate have been indicated. The attention is focused on the role of amino acids in the implementation of hepatoprotection.

Conclusions. In the pathogenesis of cardiovascular, gastroenterological, neurological diseases a significant role is given to amino acids. The analysis of the literature data confirms the rationality of the introduction of drugs containing branched-chain amino acids in order to achieve cardioprotective, neuroprotective and hepatoprotective effects.

Author Biographies

N. A. Gorchakova, Bogomolets National Medical University

Doctor of Medicine (Dr. habil.), professor of the Department of Pharmacology

A. V. Zaychenko, Bogomolets National Medical University

Doctor of Medicine (Dr. habil.), professor, head of the
Department of Pharmacology

K. Yu. Sorokopud, Bogomolets National Medical University



Huang, Y., Zhou, M., Sun, H., & Wang, Y. (2011). Branched-chain amino acid metabolism in heart disease: an epiphenomenon or a real culprit? Cardiovascular Research, 90 (2), 220–223.

D’Antona, G., Ragni, M., Cardile, A., Tedesco, L., Dossena, M., Bruttini, F., … Nisoli, E. (2010). Branched-Chain Amino Acid Supplementation Promotes Survival and Supports Cardiac and Skeletal Muscle Mitochondrial Biogenesis in Middle-Aged Mice. Cell Metabolism, 12 (4), 362–372.

Michas, G., Micha, R., & Zampelas, A. (2014). Dietary fats and cardiovascular disease: Putting together the pieces of a complicated puzzle. Atherosclerosis, 234 (2), 320–328.

Rom, O., Grajeda-Iglesias, C., Najjar, M., Abu-Saleh, N., Volkova, N., Dar, D. E., … Aviram, M. (2017). Atherogenicity of amino acids in the lipid-laden macrophage model system in vitro and in atherosclerotic mice: a key role for triglyceride metabolism. The Journal of Nutritional Biochemistry, 45, 24–38.

Oren, R., Aviram, M. (2017). It is not just lipids: proatherogenic vs. antiatherogenic roles for amino acids in macrophage foam cell formation. Current Opinion in Lipidology, 28 (1), 85–87.

Zhao, Y., Dai, X., Zhou, Z., Zhao, G., Wang, X., & Xu, M. (2015). Leucine supplementation via drinking water reduces atherosclerotic lesions in apoE null mice. Acta Pharmacologica Sinica, 37 (2), 196–203.

Shah, S. H., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Crosslin, D. R., Haynes, C., … Kraus, W. E. (2010). Association of a Peripheral Blood Metabolic Profile With Coronary Artery Disease and Risk of Subsequent Cardiovascular Events. Circulation: Cardiovascular Genetics, 3 (2), 207–214.

Gannon, N. P., Schnuck, J. K., & Vaughan, R. A. (2018). BCAA Metabolism and Insulin Sensitivity - Dysregulated by Metabolic Status? Molecular Nutrition & Food Research, 62 (6), 1700756.

Pedersen, H. K., Gudmundsdottir, V., Nielsen, H. B., Tuulia, Hyotylainen., Trine, Nielsen., Benjamin, A. H. Jensen., Kristoffer, Forslund., … Falk, Hildebrand. (2016). Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 535 (7612), 376–381.

Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., … Svetkey, L. P. (2009). A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metabolism, 9 (4), 311–326.

Bifari, F., & Nisoli, E. (2016). Branched-chain amino acids differently modulate catabolic and anabolic states in mammals: a pharmacological point of view. British Journal of Pharmacology, 174 (11), 1366–1377.

Sun, L., Hu, C., Yang, R., Lv, Y., Yuan, H., Liang, Q., … Yang, Z. (2017). Association of circulating branched-chain amino acids with cardiometabolic traits differs between adults and the oldest-old. Oncotarget, 8 (51), 88882–88893.

Paramjit, S. T., James, Thliveris., Yan-Jan Xu, Aroutiounova, N., Naranjan, S. Dh.(2011). Effects of amino acid supplementation on myocardial cell damage and cardiac function in diabetes. Exp Clin Cardiol., 16 (3), e17–e22.

Ito, T., Schaffer, S. W., & Azuma, J. (2011). The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids, 42 (5), 1529–1539.

Rizzo, A. M., Berselli, P., Zava, S., Montorfano, G., Negroni, M., Corsetto, P., & Berra, B. (2010). Endogenous Antioxidants and Radical Scavengers. Bio-Farms for Nutraceuticals, 52–67.

Clark, A. T., G. Maddaford, T., S. Tappia, P., E. Heyliger, C., K. Ganguly, P., & N. Pierce, G. (2010). Restoration of Cardiomyocyte Function in Streptozotocin-Induced Diabetic Rats after Treatment with Vanadate in a Tea Decoction. Current Pharmaceutical Biotechnology, 11 (8), 906–910.

Harris, R. Lieberman. (1999). Amino Acid and Protein Requirements: Cognitive Performance, Stress, and Brain Function. Protein and Amino Acids, 289–307.

Nikolic, J., Bjelakovic, G., & Stojanovic, I.(2003). Effect of caffeine on metabolism of L-arginine in the brain. Guanidino Compounds in Biology and Medicine, 125–128.

Tuncer, M. C., Hatipoglu, E. S., Ozturk, H., Kervancioglu, P., & Buyukbayram, H. (2005). The Effects of L-Arginine on Neurological Function, Histopathology, and Expression of Hypoxia-Inducible Factor-1 Alpha following Spinal Cord Ischemia in Rats. European Surgical Research, 37 (6), 323–329.

Ali-Sisto, T., Tolmunen, T., Viinamäki, H., Mäntyselkä, P., Valkonen-Korhonen, M., Koivumaa-Honkanen, H., … Lehto, S. M. (2018). Global arginine bioavailability ratio is decreased in patients with major depressive disorder. Journal of Affective Disorders, 229, 145–151.

Koga, Y., Povalko, N., Inoue, E., Nakamura, H., Ishii, A., Suzuki, Y., … Fujii, K. (2018). Therapeutic regimen of l-arginine for MELAS: 9-year, prospective, multicenter, clinical research. Journal of Neurology, 265 (12), 2861–2874.

Chia-Ni, Lin., Chin-Chang, Huang., Kuo-Lun, Huang., Kun-Ju, Lin., Tzu-Chen, Yen., Hung-Chou, Kuo. (2019). A metabolomic approach to identifying biomarkers in blood of Alzheimer’s disease. Ann Clin Transl Neurol., 6 (3), 537–545.

Mapstone, M., Lin, F., Nalls, A. N., Cheema, A. K., Singleton, A. B., Fiandaca, M. S., Federoff, H. J. (2017). What success can teach us about failure: the plasma metabolome of older adults with superior memory and lessons for Alzheimer’s disease. Neurobiol Aging, 51, 148–155.

Colton, C. A., Mott, R. T., Sharpe, H., Xu, Q., Van Nostrand, W. E., & Vitek, M. P. (2006). Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. Journal of Neuroinflammation, 3 (1), 27.

Liu, P., Fleete, M. S., Jing, Y., Collie, N. D., Curtis, M. A., Waldvogel, H. J., Faull, R. L. M., Abraham, W. C., Zhang, H. (2014). Altered arginine metabolism in Alzheimer’s disease brains. Neurobiol Aging, 35 (9), 1992–2003.

Kan, M. J., Lee, J. E., Wilson, J. G., Everhart, A. L., Brown, C. M., Hoofnagle, A. N., … Jansen, M. (2015). Arginine deprivation and immune suppression in a mouse model of Alzheimer’s disease. Journal Neurosci, 35, 5969–5982.

Sarchielli, P., Greco, L., Floridi, A., Floridi, A., & Gallai, V. (2003). Excitatory Amino Acids and Multiple Sclerosis. Archives of Neurology, 60 (8), 1082–1088.

Al Gawwam, G., & Sharquie, I.K. (2017). Serum Glutamate Is a Predictor for the Diagnosis of Multiple Sclerosis. The Scientific World Journal, 2017, 1–5.

Cicalini, I., Rossi, C., Pieragostino, D., Agnifili, L., Mastropasqua, L., di Ioia, M., … Del Boccio, P. (2019). Integrated Lipidomics and Metabolomics Analysis of Tears in Multiple Sclerosis: An Insight into Diagnostic Potential of Lacrimal Fluid. International Journal of Molecular Sciences, 20 (6), 1265.

Benussi, A., Alberici, A., Buratti, E., Ghidoni, R., Gardoni, F., Di Luca, M., … Borroni, B. (2019). Toward a Glutamate Hypothesis of Frontotemporal Dementia. Frontiers in Neuroscience, 13.

Kawaguchi, T., Taniguchi, E., & Sata, M. (2013). Effects of Oral Branched-Chain Amino Acids on Hepatic Encephalopathy and Outcome in Patients With Liver Cirrhosis. Nutrition in Clinical Practice, 28 (5), 580–588.

Gluud, L. L., Dam, G., Les, I., Marchesini, G., Borre, M., Aagaard, N. K., & Vilstrup, H. (2017). Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database of Systematic Reviews.

Kawaguchi, T., Shiraishi, K., Ito, T., Suzuki, K., Koreeda, C., Ohtake, T., … Suzuki, K. (2014). Branched-Chain Amino Acids Prevent Hepatocarcinogenesis and Prolong Survival of Patients With Cirrhosis. Clinical Gastroenterology and Hepatology, 12 (6), 1012–1018.e1.

Hagiwara, A., Nishiyama, M., & Ishizaki, S. (2012). Branched-chain amino acids prevent insulin-induced hepatic tumor cell proliferation by inducing apoptosis through mTORC1 and mTORC2-dependent mechanisms. Journal of Cellular Physiology, 227 (5), 2097–2105.

Gaggini, M., Carli, F., Rosso, C., Buzzigoli, E., Marietti, M., Della Latta, V., … Gastaldelli, A. (2017). Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance. Hepatology, 67 (1), 145–158.






Experimental and Clinical Pharmacology