Amino acids in cardiology, gastroenterology and neurology

Authors

  • N. A. Gorchakova Bogomolets National Medical University, Ukraine
  • A. V. Zaychenko Bogomolets National Medical University, Ukraine
  • K. Yu. Sorokopud Bogomolets National Medical University, Ukraine

DOI:

https://doi.org/10.24959/nphj.20.19

Keywords:

amino acids, pathogenesis, cardiology, gastroenterology, neurology

Abstract

Aim. To determine the role of amino acids in cardiology, gastroenterology and neurology.

Materials and methods. The material of the article was the literature data on the use of amino acids in cardiology, gastroenterology and neurology, which were processed by methods of generalization and systematization.

Results and discussion. Data on the role of leucine, isoleucine, and valine in the pathogenesis of heart failure and the effect on their metabolism for prophylactic and therapeutic purposes are provided. The antiatherogenic role of glycine and leucine, taurine and arginine in the metabolic syndrome has been highlighted. The neuroprotective and cardioprotective values of L-arginine, and the neurotransmitter value of glutamate have been indicated. The attention is focused on the role of amino acids in the implementation of hepatoprotection.

Conclusions. In the pathogenesis of cardiovascular, gastroenterological, neurological diseases a significant role is given to amino acids. The analysis of the literature data confirms the rationality of the introduction of drugs containing branched-chain amino acids in order to achieve cardioprotective, neuroprotective and hepatoprotective effects.

Author Biographies

N. A. Gorchakova, Bogomolets National Medical University

Doctor of Medicine (Dr. habil.), professor of the Department of Pharmacology

A. V. Zaychenko, Bogomolets National Medical University

Doctor of Medicine (Dr. habil.), professor, head of the
Department of Pharmacology

K. Yu. Sorokopud, Bogomolets National Medical University

student

References

Huang, Y., Zhou, M., Sun, H., & Wang, Y. (2011). Branched-chain amino acid metabolism in heart disease: an epiphenomenon or a real culprit? Cardiovascular Research, 90 (2), 220–223. https://doi.org/10.1093/cvr/cvr070

D’Antona, G., Ragni, M., Cardile, A., Tedesco, L., Dossena, M., Bruttini, F., … Nisoli, E. (2010). Branched-Chain Amino Acid Supplementation Promotes Survival and Supports Cardiac and Skeletal Muscle Mitochondrial Biogenesis in Middle-Aged Mice. Cell Metabolism, 12 (4), 362–372. https://doi.org/10.1016/j.cmet.2010.08.016

Michas, G., Micha, R., & Zampelas, A. (2014). Dietary fats and cardiovascular disease: Putting together the pieces of a complicated puzzle. Atherosclerosis, 234 (2), 320–328. https://doi.org/10.1016/j.atherosclerosis.2014.03.013

Rom, O., Grajeda-Iglesias, C., Najjar, M., Abu-Saleh, N., Volkova, N., Dar, D. E., … Aviram, M. (2017). Atherogenicity of amino acids in the lipid-laden macrophage model system in vitro and in atherosclerotic mice: a key role for triglyceride metabolism. The Journal of Nutritional Biochemistry, 45, 24–38. https://doi.org/10.1016/j.jnutbio.2017.02.023

Oren, R., Aviram, M. (2017). It is not just lipids: proatherogenic vs. antiatherogenic roles for amino acids in macrophage foam cell formation. Current Opinion in Lipidology, 28 (1), 85–87.

Zhao, Y., Dai, X., Zhou, Z., Zhao, G., Wang, X., & Xu, M. (2015). Leucine supplementation via drinking water reduces atherosclerotic lesions in apoE null mice. Acta Pharmacologica Sinica, 37 (2), 196–203. https://doi.org/10.1038/aps.2015.88

Shah, S. H., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Crosslin, D. R., Haynes, C., … Kraus, W. E. (2010). Association of a Peripheral Blood Metabolic Profile With Coronary Artery Disease and Risk of Subsequent Cardiovascular Events. Circulation: Cardiovascular Genetics, 3 (2), 207–214. https://doi.org/10.1161/circgenetics.109.852814

Gannon, N. P., Schnuck, J. K., & Vaughan, R. A. (2018). BCAA Metabolism and Insulin Sensitivity - Dysregulated by Metabolic Status? Molecular Nutrition & Food Research, 62 (6), 1700756. https://doi.org/10.1002/mnfr.201700756

Pedersen, H. K., Gudmundsdottir, V., Nielsen, H. B., Tuulia, Hyotylainen., Trine, Nielsen., Benjamin, A. H. Jensen., Kristoffer, Forslund., … Falk, Hildebrand. (2016). Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 535 (7612), 376–381.

Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., … Svetkey, L. P. (2009). A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metabolism, 9 (4), 311–326. https://doi.org/10.1016/j.cmet.2009.02.002

Bifari, F., & Nisoli, E. (2016). Branched-chain amino acids differently modulate catabolic and anabolic states in mammals: a pharmacological point of view. British Journal of Pharmacology, 174 (11), 1366–1377. https://doi.org/10.1111/bph.13624

Sun, L., Hu, C., Yang, R., Lv, Y., Yuan, H., Liang, Q., … Yang, Z. (2017). Association of circulating branched-chain amino acids with cardiometabolic traits differs between adults and the oldest-old. Oncotarget, 8 (51), 88882–88893. https://doi.org/10.18632/oncotarget.21489

Paramjit, S. T., James, Thliveris., Yan-Jan Xu, Aroutiounova, N., Naranjan, S. Dh.(2011). Effects of amino acid supplementation on myocardial cell damage and cardiac function in diabetes. Exp Clin Cardiol., 16 (3), e17–e22.

Ito, T., Schaffer, S. W., & Azuma, J. (2011). The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids, 42 (5), 1529–1539. https://doi.org/10.1007/s00726-011-0883-5

Rizzo, A. M., Berselli, P., Zava, S., Montorfano, G., Negroni, M., Corsetto, P., & Berra, B. (2010). Endogenous Antioxidants and Radical Scavengers. Bio-Farms for Nutraceuticals, 52–67. https://doi.org/10.1007/978-1-4419-7347-4_5

Clark, A. T., G. Maddaford, T., S. Tappia, P., E. Heyliger, C., K. Ganguly, P., & N. Pierce, G. (2010). Restoration of Cardiomyocyte Function in Streptozotocin-Induced Diabetic Rats after Treatment with Vanadate in a Tea Decoction. Current Pharmaceutical Biotechnology, 11 (8), 906–910. https://doi.org/10.2174/138920110793261999

Harris, R. Lieberman. (1999). Amino Acid and Protein Requirements: Cognitive Performance, Stress, and Brain Function. Protein and Amino Acids, 289–307.

Nikolic, J., Bjelakovic, G., & Stojanovic, I.(2003). Effect of caffeine on metabolism of L-arginine in the brain. Guanidino Compounds in Biology and Medicine, 125–128. https://doi.org/10.1007/978-1-4615-0247-0_18

Tuncer, M. C., Hatipoglu, E. S., Ozturk, H., Kervancioglu, P., & Buyukbayram, H. (2005). The Effects of L-Arginine on Neurological Function, Histopathology, and Expression of Hypoxia-Inducible Factor-1 Alpha following Spinal Cord Ischemia in Rats. European Surgical Research, 37 (6), 323–329. https://doi.org/10.1159/000090331

Ali-Sisto, T., Tolmunen, T., Viinamäki, H., Mäntyselkä, P., Valkonen-Korhonen, M., Koivumaa-Honkanen, H., … Lehto, S. M. (2018). Global arginine bioavailability ratio is decreased in patients with major depressive disorder. Journal of Affective Disorders, 229, 145–151. https://doi.org/10.1016/j.jad.2017.12.030

Koga, Y., Povalko, N., Inoue, E., Nakamura, H., Ishii, A., Suzuki, Y., … Fujii, K. (2018). Therapeutic regimen of l-arginine for MELAS: 9-year, prospective, multicenter, clinical research. Journal of Neurology, 265 (12), 2861–2874. https://doi.org/10.1007/s00415-018-9057-7

Chia-Ni, Lin., Chin-Chang, Huang., Kuo-Lun, Huang., Kun-Ju, Lin., Tzu-Chen, Yen., Hung-Chou, Kuo. (2019). A metabolomic approach to identifying biomarkers in blood of Alzheimer’s disease. Ann Clin Transl Neurol., 6 (3), 537–545. https://doi.org/10.1002/acn3.726

Mapstone, M., Lin, F., Nalls, A. N., Cheema, A. K., Singleton, A. B., Fiandaca, M. S., Federoff, H. J. (2017). What success can teach us about failure: the plasma metabolome of older adults with superior memory and lessons for Alzheimer’s disease. Neurobiol Aging, 51, 148–155. https://doi.org/10.1016/j.neurobiolaging.2016.11.007

Colton, C. A., Mott, R. T., Sharpe, H., Xu, Q., Van Nostrand, W. E., & Vitek, M. P. (2006). Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. Journal of Neuroinflammation, 3 (1), 27. https://doi.org/10.1186/1742-2094-3-27

Liu, P., Fleete, M. S., Jing, Y., Collie, N. D., Curtis, M. A., Waldvogel, H. J., Faull, R. L. M., Abraham, W. C., Zhang, H. (2014). Altered arginine metabolism in Alzheimer’s disease brains. Neurobiol Aging, 35 (9), 1992–2003. https://doi.org/10.1016/j.neurobiolaging.2014.03.013

Kan, M. J., Lee, J. E., Wilson, J. G., Everhart, A. L., Brown, C. M., Hoofnagle, A. N., … Jansen, M. (2015). Arginine deprivation and immune suppression in a mouse model of Alzheimer’s disease. Journal Neurosci, 35, 5969–5982. https://doi.org/10.1523/jneurosci.4668-14.2015

Sarchielli, P., Greco, L., Floridi, A., Floridi, A., & Gallai, V. (2003). Excitatory Amino Acids and Multiple Sclerosis. Archives of Neurology, 60 (8), 1082–1088. https://doi.org/10.1001/archneur.60.8.1082

Al Gawwam, G., & Sharquie, I.K. (2017). Serum Glutamate Is a Predictor for the Diagnosis of Multiple Sclerosis. The Scientific World Journal, 2017, 1–5. https://doi.org/10.1155/2017/9320802

Cicalini, I., Rossi, C., Pieragostino, D., Agnifili, L., Mastropasqua, L., di Ioia, M., … Del Boccio, P. (2019). Integrated Lipidomics and Metabolomics Analysis of Tears in Multiple Sclerosis: An Insight into Diagnostic Potential of Lacrimal Fluid. International Journal of Molecular Sciences, 20 (6), 1265. https://doi.org/10.3390/ijms20061265

Benussi, A., Alberici, A., Buratti, E., Ghidoni, R., Gardoni, F., Di Luca, M., … Borroni, B. (2019). Toward a Glutamate Hypothesis of Frontotemporal Dementia. Frontiers in Neuroscience, 13. https://doi.org/10.3389/fnins.2019.00304

Kawaguchi, T., Taniguchi, E., & Sata, M. (2013). Effects of Oral Branched-Chain Amino Acids on Hepatic Encephalopathy and Outcome in Patients With Liver Cirrhosis. Nutrition in Clinical Practice, 28 (5), 580–588. https://doi.org/10.1177/0884533613496432

Gluud, L. L., Dam, G., Les, I., Marchesini, G., Borre, M., Aagaard, N. K., & Vilstrup, H. (2017). Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.cd001939.pub4

Kawaguchi, T., Shiraishi, K., Ito, T., Suzuki, K., Koreeda, C., Ohtake, T., … Suzuki, K. (2014). Branched-Chain Amino Acids Prevent Hepatocarcinogenesis and Prolong Survival of Patients With Cirrhosis. Clinical Gastroenterology and Hepatology, 12 (6), 1012–1018.e1. https://doi.org/10.1016/j.cgh.2013.08.050

Hagiwara, A., Nishiyama, M., & Ishizaki, S. (2012). Branched-chain amino acids prevent insulin-induced hepatic tumor cell proliferation by inducing apoptosis through mTORC1 and mTORC2-dependent mechanisms. Journal of Cellular Physiology, 227 (5), 2097–2105. https://doi.org/10.1002/jcp.22941

Gaggini, M., Carli, F., Rosso, C., Buzzigoli, E., Marietti, M., Della Latta, V., … Gastaldelli, A. (2017). Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance. Hepatology, 67 (1), 145–158. https://doi.org/10.1002/hep.29465

Downloads

Published

2020-01-27

Issue

Section

Experimental and Clinical Pharmacology