Amino acids in cardiology, gastroenterology and neurology
DOI:
https://doi.org/10.24959/nphj.20.19Keywords:
amino acids, pathogenesis, cardiology, gastroenterology, neurologyAbstract
Aim. To determine the role of amino acids in cardiology, gastroenterology and neurology.
Materials and methods. The material of the article was the literature data on the use of amino acids in cardiology, gastroenterology and neurology, which were processed by methods of generalization and systematization.
Results and discussion. Data on the role of leucine, isoleucine, and valine in the pathogenesis of heart failure and the effect on their metabolism for prophylactic and therapeutic purposes are provided. The antiatherogenic role of glycine and leucine, taurine and arginine in the metabolic syndrome has been highlighted. The neuroprotective and cardioprotective values of L-arginine, and the neurotransmitter value of glutamate have been indicated. The attention is focused on the role of amino acids in the implementation of hepatoprotection.
Conclusions. In the pathogenesis of cardiovascular, gastroenterological, neurological diseases a significant role is given to amino acids. The analysis of the literature data confirms the rationality of the introduction of drugs containing branched-chain amino acids in order to achieve cardioprotective, neuroprotective and hepatoprotective effects.References
Huang, Y., Zhou, M., Sun, H., & Wang, Y. (2011). Branched-chain amino acid metabolism in heart disease: an epiphenomenon or a real culprit? Cardiovascular Research, 90 (2), 220–223. https://doi.org/10.1093/cvr/cvr070
D’Antona, G., Ragni, M., Cardile, A., Tedesco, L., Dossena, M., Bruttini, F., … Nisoli, E. (2010). Branched-Chain Amino Acid Supplementation Promotes Survival and Supports Cardiac and Skeletal Muscle Mitochondrial Biogenesis in Middle-Aged Mice. Cell Metabolism, 12 (4), 362–372. https://doi.org/10.1016/j.cmet.2010.08.016
Michas, G., Micha, R., & Zampelas, A. (2014). Dietary fats and cardiovascular disease: Putting together the pieces of a complicated puzzle. Atherosclerosis, 234 (2), 320–328. https://doi.org/10.1016/j.atherosclerosis.2014.03.013
Rom, O., Grajeda-Iglesias, C., Najjar, M., Abu-Saleh, N., Volkova, N., Dar, D. E., … Aviram, M. (2017). Atherogenicity of amino acids in the lipid-laden macrophage model system in vitro and in atherosclerotic mice: a key role for triglyceride metabolism. The Journal of Nutritional Biochemistry, 45, 24–38. https://doi.org/10.1016/j.jnutbio.2017.02.023
Oren, R., Aviram, M. (2017). It is not just lipids: proatherogenic vs. antiatherogenic roles for amino acids in macrophage foam cell formation. Current Opinion in Lipidology, 28 (1), 85–87.
Zhao, Y., Dai, X., Zhou, Z., Zhao, G., Wang, X., & Xu, M. (2015). Leucine supplementation via drinking water reduces atherosclerotic lesions in apoE null mice. Acta Pharmacologica Sinica, 37 (2), 196–203. https://doi.org/10.1038/aps.2015.88
Shah, S. H., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Crosslin, D. R., Haynes, C., … Kraus, W. E. (2010). Association of a Peripheral Blood Metabolic Profile With Coronary Artery Disease and Risk of Subsequent Cardiovascular Events. Circulation: Cardiovascular Genetics, 3 (2), 207–214. https://doi.org/10.1161/circgenetics.109.852814
Gannon, N. P., Schnuck, J. K., & Vaughan, R. A. (2018). BCAA Metabolism and Insulin Sensitivity - Dysregulated by Metabolic Status? Molecular Nutrition & Food Research, 62 (6), 1700756. https://doi.org/10.1002/mnfr.201700756
Pedersen, H. K., Gudmundsdottir, V., Nielsen, H. B., Tuulia, Hyotylainen., Trine, Nielsen., Benjamin, A. H. Jensen., Kristoffer, Forslund., … Falk, Hildebrand. (2016). Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 535 (7612), 376–381.
Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., … Svetkey, L. P. (2009). A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metabolism, 9 (4), 311–326. https://doi.org/10.1016/j.cmet.2009.02.002
Bifari, F., & Nisoli, E. (2016). Branched-chain amino acids differently modulate catabolic and anabolic states in mammals: a pharmacological point of view. British Journal of Pharmacology, 174 (11), 1366–1377. https://doi.org/10.1111/bph.13624
Sun, L., Hu, C., Yang, R., Lv, Y., Yuan, H., Liang, Q., … Yang, Z. (2017). Association of circulating branched-chain amino acids with cardiometabolic traits differs between adults and the oldest-old. Oncotarget, 8 (51), 88882–88893. https://doi.org/10.18632/oncotarget.21489
Paramjit, S. T., James, Thliveris., Yan-Jan Xu, Aroutiounova, N., Naranjan, S. Dh.(2011). Effects of amino acid supplementation on myocardial cell damage and cardiac function in diabetes. Exp Clin Cardiol., 16 (3), e17–e22.
Ito, T., Schaffer, S. W., & Azuma, J. (2011). The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids, 42 (5), 1529–1539. https://doi.org/10.1007/s00726-011-0883-5
Rizzo, A. M., Berselli, P., Zava, S., Montorfano, G., Negroni, M., Corsetto, P., & Berra, B. (2010). Endogenous Antioxidants and Radical Scavengers. Bio-Farms for Nutraceuticals, 52–67. https://doi.org/10.1007/978-1-4419-7347-4_5
Clark, A. T., G. Maddaford, T., S. Tappia, P., E. Heyliger, C., K. Ganguly, P., & N. Pierce, G. (2010). Restoration of Cardiomyocyte Function in Streptozotocin-Induced Diabetic Rats after Treatment with Vanadate in a Tea Decoction. Current Pharmaceutical Biotechnology, 11 (8), 906–910. https://doi.org/10.2174/138920110793261999
Harris, R. Lieberman. (1999). Amino Acid and Protein Requirements: Cognitive Performance, Stress, and Brain Function. Protein and Amino Acids, 289–307.
Nikolic, J., Bjelakovic, G., & Stojanovic, I.(2003). Effect of caffeine on metabolism of L-arginine in the brain. Guanidino Compounds in Biology and Medicine, 125–128. https://doi.org/10.1007/978-1-4615-0247-0_18
Tuncer, M. C., Hatipoglu, E. S., Ozturk, H., Kervancioglu, P., & Buyukbayram, H. (2005). The Effects of L-Arginine on Neurological Function, Histopathology, and Expression of Hypoxia-Inducible Factor-1 Alpha following Spinal Cord Ischemia in Rats. European Surgical Research, 37 (6), 323–329. https://doi.org/10.1159/000090331
Ali-Sisto, T., Tolmunen, T., Viinamäki, H., Mäntyselkä, P., Valkonen-Korhonen, M., Koivumaa-Honkanen, H., … Lehto, S. M. (2018). Global arginine bioavailability ratio is decreased in patients with major depressive disorder. Journal of Affective Disorders, 229, 145–151. https://doi.org/10.1016/j.jad.2017.12.030
Koga, Y., Povalko, N., Inoue, E., Nakamura, H., Ishii, A., Suzuki, Y., … Fujii, K. (2018). Therapeutic regimen of l-arginine for MELAS: 9-year, prospective, multicenter, clinical research. Journal of Neurology, 265 (12), 2861–2874. https://doi.org/10.1007/s00415-018-9057-7
Chia-Ni, Lin., Chin-Chang, Huang., Kuo-Lun, Huang., Kun-Ju, Lin., Tzu-Chen, Yen., Hung-Chou, Kuo. (2019). A metabolomic approach to identifying biomarkers in blood of Alzheimer’s disease. Ann Clin Transl Neurol., 6 (3), 537–545. https://doi.org/10.1002/acn3.726
Mapstone, M., Lin, F., Nalls, A. N., Cheema, A. K., Singleton, A. B., Fiandaca, M. S., Federoff, H. J. (2017). What success can teach us about failure: the plasma metabolome of older adults with superior memory and lessons for Alzheimer’s disease. Neurobiol Aging, 51, 148–155. https://doi.org/10.1016/j.neurobiolaging.2016.11.007
Colton, C. A., Mott, R. T., Sharpe, H., Xu, Q., Van Nostrand, W. E., & Vitek, M. P. (2006). Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. Journal of Neuroinflammation, 3 (1), 27. https://doi.org/10.1186/1742-2094-3-27
Liu, P., Fleete, M. S., Jing, Y., Collie, N. D., Curtis, M. A., Waldvogel, H. J., Faull, R. L. M., Abraham, W. C., Zhang, H. (2014). Altered arginine metabolism in Alzheimer’s disease brains. Neurobiol Aging, 35 (9), 1992–2003. https://doi.org/10.1016/j.neurobiolaging.2014.03.013
Kan, M. J., Lee, J. E., Wilson, J. G., Everhart, A. L., Brown, C. M., Hoofnagle, A. N., … Jansen, M. (2015). Arginine deprivation and immune suppression in a mouse model of Alzheimer’s disease. Journal Neurosci, 35, 5969–5982. https://doi.org/10.1523/jneurosci.4668-14.2015
Sarchielli, P., Greco, L., Floridi, A., Floridi, A., & Gallai, V. (2003). Excitatory Amino Acids and Multiple Sclerosis. Archives of Neurology, 60 (8), 1082–1088. https://doi.org/10.1001/archneur.60.8.1082
Al Gawwam, G., & Sharquie, I.K. (2017). Serum Glutamate Is a Predictor for the Diagnosis of Multiple Sclerosis. The Scientific World Journal, 2017, 1–5. https://doi.org/10.1155/2017/9320802
Cicalini, I., Rossi, C., Pieragostino, D., Agnifili, L., Mastropasqua, L., di Ioia, M., … Del Boccio, P. (2019). Integrated Lipidomics and Metabolomics Analysis of Tears in Multiple Sclerosis: An Insight into Diagnostic Potential of Lacrimal Fluid. International Journal of Molecular Sciences, 20 (6), 1265. https://doi.org/10.3390/ijms20061265
Benussi, A., Alberici, A., Buratti, E., Ghidoni, R., Gardoni, F., Di Luca, M., … Borroni, B. (2019). Toward a Glutamate Hypothesis of Frontotemporal Dementia. Frontiers in Neuroscience, 13. https://doi.org/10.3389/fnins.2019.00304
Kawaguchi, T., Taniguchi, E., & Sata, M. (2013). Effects of Oral Branched-Chain Amino Acids on Hepatic Encephalopathy and Outcome in Patients With Liver Cirrhosis. Nutrition in Clinical Practice, 28 (5), 580–588. https://doi.org/10.1177/0884533613496432
Gluud, L. L., Dam, G., Les, I., Marchesini, G., Borre, M., Aagaard, N. K., & Vilstrup, H. (2017). Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.cd001939.pub4
Kawaguchi, T., Shiraishi, K., Ito, T., Suzuki, K., Koreeda, C., Ohtake, T., … Suzuki, K. (2014). Branched-Chain Amino Acids Prevent Hepatocarcinogenesis and Prolong Survival of Patients With Cirrhosis. Clinical Gastroenterology and Hepatology, 12 (6), 1012–1018.e1. https://doi.org/10.1016/j.cgh.2013.08.050
Hagiwara, A., Nishiyama, M., & Ishizaki, S. (2012). Branched-chain amino acids prevent insulin-induced hepatic tumor cell proliferation by inducing apoptosis through mTORC1 and mTORC2-dependent mechanisms. Journal of Cellular Physiology, 227 (5), 2097–2105. https://doi.org/10.1002/jcp.22941
Gaggini, M., Carli, F., Rosso, C., Buzzigoli, E., Marietti, M., Della Latta, V., … Gastaldelli, A. (2017). Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance. Hepatology, 67 (1), 145–158. https://doi.org/10.1002/hep.29465
Downloads
Published
Issue
Section
License
Copyright (c) 2020 National University of Pharmacy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).