The study of the antimicrobial activity of ethylene-N,N’- bis(spiroindole-3,3’-pyrrolo[3,4-c]pyrrole-2a’,5a’-dihydro-2,2’,6’(1H,1’H,5’H)-trione) derivatives

Authors

  • Ye. I. Syumka National University of Pharmacy, Ukraine
  • T. P. Osolodchenko SI «Institute of microbiology and immunology n.I.I.Mechnikov NAMS», Ukraine
  • V. P. Chernykh National University of Pharmacy, Ukraine
  • L. A. Shemchuk National University of Pharmacy, Ukraine

DOI:

https://doi.org/10.24959/nphj.18.2202

Keywords:

bis-spiro-2-oxindole, double drugs, bacteria, antibacterial agents

Abstract

Aim. To find compounds with the antimicrobial activity in the series of N,N’-bis(spiroindole-3,3’-pyrrolo[3,4-c] pyrrol-2a’,5a’-dihydro-2,2’,6’(1H,1’H,5’H)-trione) derivatives.
Materials and methods. The antimicrobial activity was studied by the agar diffusion method.
Results and discussion. The antimicrobial screening data revealed the pronounced biological activity of ethylene-N,N’-bis(spiroindole-3,3’-pyrrolo[3,4-c]pyrrol-2a’,5a’-dihydro-2,2’,6’(1H,1’H,5’H)-trione) derivatives against gramnegative (Proteus vulgaris, Escherichia coli, Pseudomonas aeruginosa) and grampositive (Staphylococcus aureus, Bacillus subtilis) bacteria and as well as against Candida albicans fungi.
Conclusions. The antibacterial activity of ethylene-N,N’-bis(spiroindole-3,3’-pyrrolo[3,4-c]pyrrol-2a’,5a’-dihydro-2,2’,6’(1H,1’H,5’H)-trione) derivatives has been studied. The compounds with a significant level of the antimicrobial activity against gramnegative bacteria (Proteus vulgaris, Escherichia coli, Pseudomonas aeruginosa), grampositive bacteria (Staphylococcus aureus, Bacillus subtilis), as well as against fungi (Candida albicans) have been found.
According to the data of the microbiological screening the most active compounds appeared to be ethylene-N,N’-bis(spiroindole-3,3’-pyrrolo[3,4-c]pyrrol-2a’,5a’-dihydro-2,2’,6’(1H,1’H,5’H)-trione) 1 and ethylene-N,N’-bis(spiroindole-3,3’-pyrrolo[3,4-c]pyrrol-5′-methyl-2a’,5a’-dihydro-2,2’,6’(1H,1’H,5’H)-trione) 2.

References

10 vedushchikh prichin smerti v mire. (2014). Informatcionnyi biulleten VOZ № 310.

Ball–Jones, N. R., Badillo, J. J., Franz, A. K. (2012). Strategies for the enantioselective synthesis of spirooxindoles. Organic & Biomolecular

Chemistry, 10 (27), 5165. doi: 10.1039/c2ob25184a

Shvetc, A. A., Kurbatov, S. V. (2012). Khimiia geterotcyklicheskikh soedinenii, 5, 859–866.

Palyulin, V. A., Osolodkin, D. I., Zefirov, N. S. (2010). Virtual Screening Workflow for Glycogen Synthase Kinase 3β Inhibitors: Convergence

of Ligand–based and Structure based Approaches. 6th German Conference on Chemoinformatics. Abstract Book, 73.

Zefirova, О. N., Zefirov, N. S. (2000). Vestnik Moskovskogo Universiteta, 2, 103–108.

Takayama, H., Kitajima, M. (2016). Monoterpenoid Bisindole Alkaloids. Graduate School of Pharmaceutical Sciences, 259–307.

Kim, S. Y., Roh, H. J., Seo, D. Y., Ryu, J. Y., Lee, J., Kim, J. N. (2017). Base–catalyzed one–pot synthesis of dispiro–1,3–dioxolane

bisoxindoles from N–methylisatin and methyl propiolate. Tetrahedron Letters, 58 (10), 914–918. doi: 10.1016/j.tetlet.2017.01.055

Qu, J., Fang, L., Ren, X.–D., Liu, Y., Yu, S.–S., Li, L., Ma, S.–G. (2013). Bisindole Alkaloids with Neural Anti–inflammatory Activity

from Gelsemium elegans. Journal of Natural Products, 76 (12), 2203–2209. doi: 10.1021/np4005536

Zhang, W., Huang, X.–J., Zhang, S.–Y., Zhang, D.–M., Jiang, R.–W., Hu, J.–Y., Ye, W.–C. (2015). Geleganidines A–C, Unusual Monoterpenoid

Indole Alkaloids from Gelsemium elegans. Journal of Natural Products, 78 (8), 2036–2044. doi: 10.1021/acs.jnatprod.5b00351

Redkin, R. G., Syumka, E. I., Shemchuk, L. A., Chernykh, V. P. (2017). Synthesis and antimicrobial activity of Bis–Derivatives of

a′,6a′ Dihydro–2’H–Spiro[Indole–3,1’–Pyrrolo[3,4–c]Pyrrole]–2,4’,6’(1H,3’H,5’H)–Trione. Journal of Applied Pharmaceutical Science,

(06), 069–078. doi: 10.7324/JAPS.2017.70610

Syumka, Y. I., Shemchuk, L. A., Chernykh, V. P., Redkin, R. G. (2018). The study of the three–component interaction between isatin,

α–amino acids and N,N’–di(3–carboxypropenoyl)–1,2–ethylenediamine and determination of the structure of the compounds obtained.

Žurnal Organìčnoï Ta Farmacevtičnoï Hìmìï, 16 (1(61)), 34–41. doi: 10.24959/ophcj.18.932

Bezuglyi, P. O. (2008). Farmatsevtychna khimiia. Vinnytsia: Nova knyha, 560.

Metody polucheniia khimicheskikh reaktivov i preparatov. (1960). Moscow, 85.

Balouiri, M., Sadiki, M., Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical

Analysis, 6 (2), 71–79. doi: 10.1016/j.jpha.2015.11.005

Patel, J. B., Cockerill, F. R., Bradford, P. A. et al. (2015). Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial

Susceptibility Testing; Twenty–Second Informational Supplement. Document M100–S25, 35 (3).

Volianskyi, Yu. L., Hrytsenko, I. S., Shyrobokov, V. P. et al. (2004). Vyvchennia spetsyfichnoi aktyvnosti protymikrobnykh likarskykh

zasobiv. Kyiv: DFTs MOZ Ukrainy, 38.

Derzhavna farmakopeia Ukrainy, 1 vyd. (2001). Kharkiv: Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv.

Bakteriolohichnyi kontrol pozhyvnykh seredovyshch. (2000). Informatsiinyi lyst MOZ Ukrainy № 05. 4. 1 / 1670. Kyiv, 4.

American Society for Microbiology. Manual of Antimicrobial Susceptibility Testing. American Society for Microbiology. (2005). Washington,

Downloads

Published

2018-05-31

Issue

Section

Experimental and Clinical Pharmacology